
Abstract

We describe a software system, TOPO, that numerically
analyzes and graphically displays topological aspects of a
three dimensional vector field, v, to produce a single, rela-
tively simple picture that characterizes v. The topology of v
that we consider consists of its critical points (where

), their invariant manifolds, and the integral curves
connecting these invariant manifolds. Many of the interest-
ing features of v are associated with its critical points. The
field in the neighborhood of each critical point is approxi-
mated by the Taylor expansion. The coefficients of the first
non-zero term of the Taylor expansion around a critical
point are the 3x3 matrix . Critical points are classified
by examining ’s eigenvalues. The eigenvectors of
span the invariant manifolds of the linearized field around a
critical point. Curves integrated from initial points on the
eigenvectors a small distance from a critical point connect
with other critical points (or the boundary) to complete the
topology. In addition, one class of critical surfaces impor-
tant in computational fluid dynamics is analyzed.

TOPO is implemented as a module in the FAST [1] visu-
alization environment. FAST is general purpose visualiza-
tion software with modules for isosurface generation,
particle tracing, etc. TOPO operates on curvilinear, struc-
tured grids, including large multi-zone grids. We have used
TOPO to visualize a number of computational fluid dynam-
ics (CFD) data sets. The results agree well with other topol-
ogy software and hand generated topologies. TOPO has
proved useful in finding surface topology, flow attachment
and separation points, vortex cores, scalar field local ex-
trema, and generally interesting regions of v. We believe
there may be other interesting applications yet to be discov-
ered. This paper, along with the references, contains most of
the information needed for a scientific programmer to code
a topology module in another environment.

Intr oduction

Three dimensional vector fields are difficult to visualize.
One simple technique chooses a set of points in the field
and draws arrows indicating the magnitude and direction of
v at each point. Unfortunately, this usually results in a dis-
play that is either cluttered or limited to a small subset of
the data. If the points are chosen from some simple shape
like a plane, the ends of the vectors can be connected to
form a deformation surface -- but again only a subset of
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data is visualized. One can calculate the vector magnitude
and use scalar visualization techniques but directional in-
formation is lost. Interactive control of initial positions for
integral curves (particle traces) [2] and surfaces [3] may be
used to explore v, but choosing appropriate initial positions
is hardly straightforward.

A simple picture completely characterizing v is the ideal.
Studying such a picture should give one a clear and com-
plete understanding of the important characteristics of v.
Vector field topology visualization can go a long way in this
direction; our software takes one small step.

Informally, vector field topology consists of the key
points, curves and surfaces that, taken together, characterize
all integral manifolds in v. Integral manifolds include parti-
cle traces, streamlines, integral curves, stream surfaces and
integral surfaces. With certain exceptions, all integral mani-
folds must begin and end at zeros in v -- or at field bound-
aries. The zeros in v form points, curves, surfaces and
volumes -- critical manifolds. Thus, if one finds the critical
manifolds in v and can characterize v in the neighborhood
of these manifolds, one can generate almost any integral
manifold in v by choosing initial conditions according to
the characterization.

Previous Work

The connections between differential equations and the
topology of vector fields were initially developed by
Poincare, who laid down the foundations of the qualitative
theory of differential equations in 1875 [4]. Andronov es-
sentially completed the theory in two dimensions during the
middle of the twentieth century [5,6]. The theory in three
dimensions is still not complete [7]. More contemporary tu-
torial references which discuss differential equations, vec-
tor spaces and dynamical systems include [8,9,10]. Since
the introduction of computers, a plethora of complex phe-
nomena that require at least three dimensions to exist (e.g.,
chaotic flows and strange attractors) have become much
more widely known. Many of them were, however, known
to Poincare. For a historical survey, see [11].

One of the first applications of the qualitative theory of
differential equations to three dimensional fluid flows was
by Lighthill [12]. Perry and Fairlie [13] extended the ap-
proach to a more general class of flows. This initial work
has been enhanced by that of many others, notably
[14,15,16,17].

Automatic computation of fluid flow topology from ex-
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perimentally generated data has been investigated [18]. The
topology of numerically simulated flowfields has been in-
vestigated using automatic techniques by Shirayama and
Kuwahara [19] and by Helman and Hesselink
[20,21,22,23].

Helman and Hesselink have reported on two dimension-
al topology software using a critical point classification
scheme similar to ours. A third dimension is used to repre-
sent time for unsteady 2D flows. They create surfaces con-
necting the important integral curves at different time steps.
They also find attachment and separation surfaces in three
dimensional flows. Their two dimensional results on the
hemisphere cylinder surface flow topology agree very well
with ours. Recently, their work has been extended to find
3D critical points [22].

Analysis

TOPO analyzes data generated by computational fluid
dynamics (CFD) codes. These data are expressed on curvi-
linear, structured grids in PLOT3D format [26]. Trilinear
interpolation is used to find field values between grid
points. The curvilinear coordinate system is often referred
to as “computational space” in this paper. The curvilinear
coordinates of a point are  while its physi-
cal coordinates are xi = (x,y,z). The two coordinate systems
are related by the transformation:

This coordinate system is usually implemented as a three
dimensional array of (x,y,z) positions. The i,j,k indexes into
this array are equivalent to the integer part of the

 coordinates. We use computational space for
calculations since they simplify many operations; e.g., dif-
ferencing.

is defined as:

where, in this case, (x,y,z) are the lagrangian coordinates of
an element “moving” with the vector field and t is time in
velocity fields and an arbitrary parameter in oth-
ers.  may be converted to computational space

 using the chain rule. Considering only the
first component:

or using matrix vector notation to include all components,
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whereJ is the Jacobian matrix of the coordinate transfor-
mation. J and J-1 are used to convert between physical
space and computational space.

Critical points exist where the components of v all si-
multaneously vanish. They are identically located in both
physical and computational space since zero length vectors
remain invariant under nonsingular local linear transforma-
tions such asJ andJ-1.

The Matrix : The Taylor series expansion of v about a
point x(0) is:

we assume v sufficiently smooth and differentiable for the
Taylor expansion to exist. Subscripts indicate components.
At a critical point, the first term of the expansion vanishes
(by definition). Considering only the second term, each
equation has three terms, one for each coordinate direction.
The coefficients of these equations are the 3x3 matrix.

Around a critical point, the eigenvalues and eigenvectors
of this matrix determine the local behavior v. Positive
eigenvalues indicate that v is directed away from the critical
point (a repelling eigendirection) and negative values the
opposite (an attracting eigendirection). A complex conju-
gant pair of eigenvalues indicate that v spirals in or out, de-
pending on the sign of the real part of the eigenvalues. Thus
the linear approximation of v near a critical point is charac-
terized by the eigenvalues and eigenvectors of. The
eigenvalues of v may be used to classify the type of a criti-
cal point and the eigenvectors may be used to find its in-
variant manifolds.

As shown in reference [37] the matrix  is related by a
similarity transformation to its computational space equiva-
lent . Thus the eigenvalues of both matrixes are the
same, and eigenvectors are related by the same similarity
transformation.

Critical Point Classification: Critical points may be classi-
fied as nodes, foci (2D only), or saddles on the basis of the
eigenvalues of  [11]. Nodes and foci may be further
classified as attracting or repelling (See Figures 1 and 2).
Positive eigenvalues indicate a repelling node, negative val-
ues an attracting node.

Two dimensional saddles have one positive and one neg-
ative eigenvalue. Near a saddle, v approaches the critical
point along negative eigendirections and recedes along pos-
itive eigendirections. In three dimensions, two eigendirec-
tions have the same sign and span a plane. The third
eigendirection spans a line. Thus, v approaches (for exam-
ple) a 3D saddle along a plane and recedes (in this example)
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from the saddle along a line.
Foci only appear in two dimensions. Around foci, v spi-

rals towards or away from the focus. The eigenvalues are a
complex conjugant pair with a positive real part indicating a
repellor and a negative real part indicating an attractor. The
magnitude of the imaginary part indicates the strength of
the spiraling motion. In three dimensions, the plane of a
saddle may be a two dimensional focus. Such a 3D saddle
will have one real and two complex eigenvalues.

The following diagrams of critical point types are after
Abraham [11].

Visualization

Our software draws the topology of v as a set of critical
points and associated integral curves. The user selects
which critical points are to be displayed based on their
types. Integral curves are chosen by selecting the eigendi-
rections to integrate along for each type of critical point.

Critical points are visualized using glyphs consisting of
three lines crossing at the location of the critical point (see
Figure 3). The lines are colored to distinguish the attracting
and repelling eigenvectors (associated with negative and
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Figure 1: Classification of two dimensional critical points.
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Figure 2: Classification of three dimensional critical points.
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positive eigenvalues respectively). Arrowheads may be
added to the lines to further clarify their direction. Lines
representing vectors with complex eigenvalues are connect-
ed to form a rectangle in the invariant (spiraling) plane.
Line length may be scaled by the eigenvalue’s real part.
One may request quantitative information on selected criti-
cal points, such as their location, eigenvalues, eigenvectors
and the components of . Most visualization parameters
are user controlled. See the reference [37] for defaults.

Integral curves are visualized by a set of connected line
segments. Separate color controls for outgoing and incom-
ing integral curves are provided. Optionally, arrowheads
showing the direction of v along an integral curve may be
added. These arrowheads may be animated to appear to
flow along the curves.

Implementation

TOPO is implemented as a module in the FAST CFD vi-
sualization environment [2]. The software transforms v to
computational space, locates candidate grid cells that may
contain critical points, finds critical points within these can-
didate cells, classifies each critical point using the eigenval-
ues of , integrates curves along the eigendirections of

, and displays critical points and integral curves com-
bined with other FAST generated visual elements. Most pa-
rameters of topology generation are under user control. We
have chosen defaults for these parameters that work well
with the CFD data sets we have examined. These defaults
may be found in reference [37].

Transformation of v to Computational Space: The vector
field is converted to computational space. This transforma-
tion is accomplished by differencingx with respect to  to
generateJ at each grid node, invertingJ, and transforming
v using the resulting matrix. All of the following calcula-
tions are accomplished in computational space.

Finding Candidate Grid Cells: A critical point can only
occur in a cell where the values of all three components of v
pass through zero (see Figure 4). For monotonic interpola-
tion schemes (e.g. trilinear interpolation), this may be deter-
mined by a simple heuristic. For each component we
examine the value at each cell vertex. If both negative and
positive values exist, that component must change sign (and
hence pass through zero) somewhere within the cell. This is
a necessary, but not sufficient condition for a critical point
to exist within the cell. It is not sufficient because the sur-
faces within a cell where the component-wise zero cross-
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Figure 3: Critical point glyphs.
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ings exist might not intersect.

Finding Critical Points within Candidate Cells: The
problem of finding critical point positions inside candidate
cells is equivalent to solving a system of simultaneous non-
linear equations.

The candidate cell is recursively bisected and each of the
resulting eight sub-cells subjected to the candidate test. If,
after a fixed number of bisections a subcell passes the can-
didate test, the location is more precisely estimated using
Newton’s method. The final point is allowed to lie within a
small distance outside of the subcell. The convergence cri-
teria for the Newton iterations is determined by multiplying
the average magnitude of the cell’s vectors by a small fac-
tor. This can sometimes cause the criteria to be too small, so
there is also an absolute lower bound on the criteria.

The user may choose to use only the bisection method.
In this case a critical point is assumed to lie at the center of
any subcell passing the candidate test after the last bisection
has been accomplished.

Critical point locations are shown in figure 5.

Classifying Critical Points: Once a critical point is locat-
ed, it must be classified by examining . is calculated
using finite differences to find the gradient at the cell’s ver-
tices.  at the critical point is then found by trilinear in-
terpolation. This is algebraically equivalent to interpolating
stencil values in neighboring cells and then differencing.
The eigenvalues of  are found (using standard methods)
and the critical point is classified based on their locations in
the complex plane (see Figure 1, 2, 3, and 6).

Integrating Curves: Integral curves may be computed
from initial positions very close to critical points along the
eigendirections of  (see Figure 7). These curves are inte-
grated forward or backward depending on the sign of the
eigenvalue.

When an integral curve crosses a computational space
boundary, the rest of computational space must be checked
to see if the curve re-enters. For example, the grid may be
periodic, or may overlap another grid in a multiple-zone
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Figure 4: Candidate grid cells (Data: Hung and Buning). Figure 5: Critical point positions.

Figure 6: Critical point glyphs. Figure 7: Integral curves started near critical points.



dataset. The check is accomplished by an octree search [24]
using bounding boxes to prune the search tree followed by a
tetrahedral containment test [25]. A bisection method is ap-
plied to remaining potential grid cell locations before final
rejection or acceptance of a new computational space posi-
tion for continuing the integration. The computational
space coordinate of grid re-entry is set to the center of the
enclosing subcell.

Displaying Topology: Critical point and integral curve lo-
cations are converted from computational space to physical
space for display purposes. The mapping is accomplished
using trilinear interpolation of the physical space coordi-
nates at the vertices of grid cells.

Numerical Methods

Care must be taken when evaluating the eigensystems of
matrices that are defective or nearly so [28]. Numerical am-
biguities that arise when at or near a multiple root are han-
dled in an ad-hoc manner. Results of subtraction are set to
zero if the absolute value of the result is less than a small
fraction of the absolute value of any operand.

In most places where the software tests a value for zero
there is a relative fuzz factor. Values with an absolute value
less than the relative fuzz factor are assumed to equal zero.
Default fuzz factors may be found in reference [37].

Integration is performed in computational space using a
fourth order Runga-Kutta method with adaptive step size
error control [29]. We found this to be necessary since the
magnitude and direction of the vector field can vary dramat-
ically near critical points. The initial step size, maximum
number of steps, maximum stepsize, minimum and maxi-
mum step length, and the adaptation criteria in each dimen-
sion parameterize the integration.

Dif ferencing is accomplished using a three point stencil
where possible. Where one of the values is unavailable due
grid boundaries or invalid grid points, a two point, one sid-
ed difference is used.

Cell bisection is accomplished by interpolating the val-
ues at the midpoint of each cell edge, face, and at the cell
center, forming eight sub-cells. This procedure is per-
formed recursively.

Special Cases

Degenerate Critical Points:The discussion thus far has
focused on “generic” or “hyperbolic” critical points. Excep-
tional cases can arise in several situations. Non-hyperbolic
critical points occur when the real part of any eigenvalue is
equal to zero. Other exceptional cases occur when defective
matrices are encountered and hence eigenvectors coincide.
These degenerate cases, though unstable, do occur in flows
with imposed constraints such as symmetry or incompress-
ibility . Currently, all degenerate critical points are placed in

a single class and no further analysis is attempted.

Critical Curves, Surfaces and Volumes: With the notable
exception of no-slip boundaries in CFD velocity fields,
TOPO makes a minimal effort to detect, analyze, and dis-
play curves, surfaces or volumes wherev vanishes. No at-
tempt is made to find critical curves or surfaces unless they
fall on grid cell boundaries. If two adjacent grid points have
zero length vectors, we assume a critical line between them.
For the most part, TOPO simply draws a line between such
points. Critical surfaces on cell boundaries can be detected
by examining these lines. Critical volumes can be similarly
found. The cells containing such critical lines are not con-
sidered candidates and are not searched for critical points.

If a critical curve or surface exists within a grid cell, then
multiple critical points may be found. TOPO limits the total
number of critical points found in a single grid cell to about
eight. A warning message is printed if this limit is exceed-
ed.

No-slip Boundaries: In many CFD computations, no-slip
boundary conditions are imposed on the velocity field. On
these boundaries, v is zero. Our software analyzes this im-
portant class of degenerate critical surface by examining the
skin friction field. This is the two dimensional field formed
by taking the limit of v at the no-slip surface. This is ap-
proximated by the value of v one grid line away from the
surface. The critical points in the skin friction field are
found and analyzed as follows: Since  at critical
points in this field, the second derivative term in the Taylor
expansion of v is examined. This third rank tensor is identi-
cally zero in the two dimensions corresponding to the local
on-surface coordinates. Thus, its non-trivial terms can be
expressed as a 3x3 matrix, and the same eigenvalue analy-
sis may be applied. This will be elaborated upon in a future
paper.

To allow for comparison with topologies derived from
wind tunnel oil flow experiments, integral curves starting
along eigenvectors that lie on a no-slip surface are integrat-
ed in the skin friction field (i.e., the limit ofv as the surface
is approached) and constrained to stay on a no-slip surface.

Grid Singularities:  Special case code has been included to
handle common coordinate system singularities. A problem
occurs in candidate grid cell selection when a grid cell edge
is collapsed; i.e., if two or more adjacent grid points have
identical locations in physical space. If the candidate test is
applied using the computational space vectors, false posi-
tives can result. Subsequently, a critical point that does not
really exist may be found. This problem can be circumvent-
ed by detecting the case where two grid points are identical-
ly located in physical space and arbitrarily choosing one of
the computation space vectors to be the vector at both grid
points. The candidate test will then work properly.
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Results

We have used TOPO and other FAST modules to inves-
tigate the properties of many CFD solutions.These solu-
tions include flow about a blunt fin [30], a NASA space
shuttle orbiter [31], a shuttle engine liquid oxygen post
[32], a shuttle launch configuration [33], a hemisphere cyl-
inder [34], and others.

By carefully choosing the critical points to display and
the eigendirections to integrate, one may create specific vi-
sualizations. Useful visualizations include vehicle surface
topology, vortex cores, scalar field extrema, interesting re-
gions of v, and places where CFD flow solvers have not
performed well.

Surface Flow Topology: By integrating curves in the two
dimensional skin friction field along the eigendirections of
saddles, one may visualize surface flow topology [12,21].
These curves connect skin friction field critical points and
allow the user to deduce the rest of the surface skin friction
field’s dynamics qualitatively, since integral curves may not
intersect, except at critical points. Furthermore, by examin-
ing the off-surface eigenvectors, one may determine if the
flow is attaching or separating.

TOPO has been partially validated by comparing surface
flow topology results on a hemisphere cylinder with Hel-
man’s [21] computed results and hand generated results in
[34]. Note the close correspondence between Helman’s re-
sults (Plate 1a) and ours (Plate 1b). In reference [21] Hel-
man’s results are shown to compare well with Ying’s hand
generated results [34].

Vortex Cores:By one definition, a vortex core is the inte-
gral curve within a vortex that has minimum curvature [35].
If there is a critical point on a vortex core, then that point
must be a spiral-saddle [36]. The eigenvector belonging to
the only real eigenvalue of the spiral-saddle corresponds,
locally, to an integral curve entering or leaving the critical
point. This particular curve does not spiral at all and is
therefore on the vortex core. By continuing to integrate this
curve, the entire vortex core may be visualized.

A shuttle main engine liquid oxygen post data set is used
to illustrate TOPO’s vortex core capability (see Plate 2a).
The core location closely corresponds to the vortex cores
found using interactive particle tracers (see Plate 2b).

Scalar Field Extrema: After taking the gradient derivative
of a scalar field one may visualize the topology of the re-
sulting vector field. The nodes of this field will be at scalar
field local minima and maxima. Other aspects of gradient
derivative fields should shed light on the structure of the
corresponding scalar fields as well. We have not yet ana-
lyzed these.

Inter esting Regions of v:Interesting regions of v tend to
contain critical points. For example, flow reversal (recircu-
lation) frequently involves the simultaneous existence of

several critical points. One may therefore use critical point
locations as a guide for the interactive specification of ini-
tial positions for particle traces and stream surfaces. For ex-
ample, a cluster of critical points is found near the lee
surface of the hemisphere cylinder. These critical points are
closely associated with the separation bubble (see Plate 3).

Where a Flow Solution is Inadequate:The existence of
pure attractors or pure repellors in a steady or incompress-
ible flow solution may well indicate some problem, such as
an incompletely converged solution. Such a situation can-
not exist in a physically realistic flowfield since it violates
conservation of mass expressed by the continuity equation

. Similarly, the existence of saddle-node pairs
that disappear under a small perturbation may indicate
“wiggles” in the topology, akin to the nonphysical wiggles
found around shocks when inadequate differencing
schemes are employed.

Large Data Sets:Since the topology of v must only be cal-
culated once, topological visualization is an excellent tech-
nique for examining large data sets where slow response
renders interactive techniques ineffective. Plate 4 are the
vortex cores of a shuttle launch configuration. This is a
900,000 node, nine grid data set.

Summary

Vector fields may be visualized using the new TOPO
module in FAST. A single, relatively simple picture cap-
tures many key features of v. We have used this software to
visualize CFD solutions. To our knowledge, the software is
unique in displaying off surface eigenvectors of skin fric-
tion critical points, integrating vortex cores from spiral-sad-
dles, and in the combination of topology visualization with
a general purpose visualization system (FAST). We believe
that topology visualization may be useful well beyond the
grounds we have explored.
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